Extinction and Emission Tomography in Turbulent Sprays and Flames

> Yudaya Sivathanu En'Urga Inc.

Acknowledgement: The author acknowledges the support provided by the National Science Foundation and the National Aeronautics and Space Administration for this work.

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Outline

- Extinction Tomography
- Emission Tomography
- Concluding Remarks

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Primer on Tomography

- Non-intrusive path-integrated measurement at multiple angles and multiple slices at each angle
- Deconvolute measurements to obtain local properties

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Extinction Tomography

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Extinction Tomography

- > Extinction measured at multiple view angles
- > *Deconvoluted using tomography*
- > Challenge is that objects are moving

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

- > Multiple view angles for non-axisymmetric flows
- > Multiple slices to obtain high spatial resolution
- > High speed for transient phenomena
- Extinction should be less than 0.99
- Local extinction coefficient obtained by statistical deconvolution
- > Optical access to flow required

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Deconvolution Domain

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Governing Equations

Equation of radiative transfer for one sample path

$$\exp(-K_{1}^{1}\Delta_{1}^{1} - K_{1}^{2}\Delta_{1}^{2} - K_{1}^{3}\Delta_{1}^{1}) = T_{1}^{1}$$

$$K_{1}^{1}\Delta_{1}^{1} + K_{1}^{2}\Delta_{1}^{2} + K_{1}^{3}\Delta_{1}^{1} = -\log(T_{1}^{1})$$

$$E\left\{K_{1}^{1}\Delta_{1}^{1} + K_{1}^{2}\Delta_{1}^{2} + K_{1}^{3}\Delta_{1}^{1}\right\} = E\left\{-\log\left(T_{1}^{1}\right)\right\}$$

$$\Delta_{1}^{1}E\left\{K_{1}^{1}\right\} + \Delta_{1}^{2}E\left\{K_{1}^{2}\right\} + \Delta_{1}^{1}E\left\{K_{1}^{3}\right\} = E\left\{-\log\left(T_{1}^{1}\right)\right\}$$

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

System of Equations

- For M view angles and N slices, MxN linear equations
- All unknown local extinction coefficients are positive
- LINPOS equations inverted using MLE method
- Method guarantees convergence to optimal solution
- Local extinction coefficient identical to local surface area per unit volume for spherical drops > wavelength of light
- Local extinction coefficient related to volume fraction of particulate for particle < wavelength of light

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Algorithm Steps

- Input geometry of measurements
- Provide initial guess of local extinction coefficients
- Calculate theoretical path integrated transmittance
- Compare theoretical and measured transmittances
- Update local extinction coefficients using MLE method

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Synthetic Data for Algorithm Verification

2 small highly absorbing region Minimum transmittance < 0.10

$$f(r) = \frac{1}{\sigma R \sqrt{2\pi}} \exp(-\left[\left(r/\sigma R\right)^2\right]/2)$$

Very difficult to resolve using alternate methods Rigorous test of the algorithm

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Output from Algorithm

Peak local extinction coefficient is 93% of input (6 x 256 array)

RMS fitting error defined as:

$$Err = \sqrt{\sum_{i=0}^{N} \left(\tau_{syn}^{i} - \tau_{dec}^{i}\right)^{2} / N}$$

RMS error is less than 1%

Jongmook Lim and Yudaya Sivathanu, (2005), "Optical Patternation of a Multihole Nozzle" Atomization and Sprays, vol. 15, pp. 687-698.

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Result: Aircraft Engine Nozzle

- Ensemble average of drop surface area density
- High/low surface area indicates streaks/voids

En'Urga Inc.

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Quality Assurance: Aircraft Engine Nozzle

Summary Report 0 <600p625-	_new_Test_Po	oint_8.scn> _ 🗆 🗙		
Spray Angle (degree)				
Method Line Integration	Major Axis	91.30		
	Minor Axis	92.25		
Deviation Angle (degree)				
		0.85		
	Center (x,y)	(-0.58,0.96)		
Patternation Number				
		0.1498		
Method (Max-Min)/Mean	Sector No.	24		
Estimated RMS/MEAN of Total Surface Area				
RMS 0.0415	-			
Deconvoluted Total Surface Area on Entire Domain				
Samples Used: 10000	Area(mm^2)	72.3647		
Max. Badial Surface Area/Volume (1/mm)				
· · · · · · · · · · · · · · · · · · ·	,	0.00715		
Max. Angular Deviation (Gamma)				
Mau Angulari 2 Mara		0.02870		
Max. Angular L2 Norm		0.031		

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Selected Customers

Abbott	General Motors	Hitachi
Bend Research	Cummins	AVL
Pfizer	Emcom Technologies	FEV
S.C. Johnson & Son	Faurecia	Nordson
Catalytica Energy	Donaldson	Delavan
Delphi	Proctor & Gamble	Woodward
Ricardo	Honeywell	Tenneco
Continental	Bombardier	Synerject
Eaton	Rolls Royce	Danfoss
Columbian Chemical	General Electric	Boston Scientific
United Technologies	Dow Agrosciences	Vertex
Aerosapce System	Laboratories	Pharmaceuticals
Toyota	Bosch LLC.	3M

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Emission Tomography

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Typical Experimental Arrangement

- Either parallel path or fan beam arrangement
- Intensity measured at multiple view angles
- Deconvoluted using tomography

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Measurement Considerations

- High temperature objects (typically flames)
- > Intensity is related to temperature and emissivity
- > Highly non-linear in temperature
- Emissivity is typically unknown
- > Multiple wavelength measurements used
- > Self absorption for optically thick systems

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Relevant Equations

Non-linear equations, difficult to solve

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

1

Linearize Equations

$$I = I_b \cdot (1 - e^{-k\Delta})$$

$$log(I) = log(I_b) + log(1 - \tau)$$

$$log(I_b) \cong A + BT$$

$$log(1 - e^{-k\Delta}) = log(1 - \tau) \cong C + DX + EY + FT$$

$$log(I) = D \cdot X + E \cdot Y + (B + F) \cdot T + A + C$$

J. Lim, Y. Sivathanu, J. Ji, and J. Gore, (2004), "Estimating Scalars from Spectral Radiation Measurements in a Homogeneous Hot Gas Layer," Combst. Flame, vol. 137, p. 222-229.

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Constants in Equations

From databases such as RADCAL, HITRAN

$$A = -\frac{\partial \log(I_{b})}{\partial T}T_{0} + \log(I_{b}(T_{0})) \qquad B = \frac{\partial \log(I_{b}(T_{0}))}{\partial T}$$

$$C = -\frac{\partial \log(\alpha(X_{0}, Y_{0}, T_{0}))}{\partial X}X_{0} - \frac{\partial \log(\alpha(X_{0}, Y_{0}, T_{0}))}{\partial Y}Y_{0} - \frac{\partial \log(\alpha(X_{0}, Y_{0}, T_{0}))}{\partial T}T_{0} + \log(\alpha(X_{0}, Y_{0}, T_{0}))$$

$$D = \frac{\partial \log(\alpha(X_{0}, Y_{0}, T_{0}))}{\partial X} \qquad E = \frac{\partial \log(\alpha(X_{0}, Y_{0}, T_{0}))}{\partial Y}$$

$$F = \frac{\partial \log(\alpha(X_{0}, Y_{0}, T_{0}))}{\partial T}$$

$$I = \frac{\partial \log(\alpha(X_{0}, Y_{0}, T_{0}))}{\partial T}$$

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Flow Chart for Solution

- **Linearize equations**
- Guess transmittance
- > Use MLE to obtain local intensities
- Estimate local properties based on intensities
- **Calculate transmittance from local properties**
- > Utilize transmittance in updated guess
- Continue until convergence achieved

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Validation method

- Use a well characterized flame
- Calculate intensities emitted using equation of radiative transfer
- Use calculated intensities as input to algorithm
- Compare algorithm output with input flame properties

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Calculated Intensities (input to algorithm)

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Converged Properties

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Implementation (Turbine Inlet)

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Implementation (Turbine Blade Temperature)

30 bar power generation turbine, emission from blade Blade temperature and emissivity (for TBC monitoring)

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Implementation (Axisymmetric system)

Emission measured at 128 view angles 160 wavelengths obtained with ES100 imaging spectrometer

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Evaluation in a Laminar Flame

Incipient Sooting Ethylene Flame Fuel Flow Rate: 2.30 cm³/sec Coflow Air: 713.3 cm³/sec

Measured spectral radiation intensities above burner exit

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Estimated particulate concentrations, temperatures, and gas concentrations reasonably well

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Implementation (Non-axisymmetric)

Hydrogen/oxygen rocket engine (NASA Marshall-1500 PSI)

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Results

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Temperatures

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Sample Implementation (Solid Propellant Plume)

Test in solid propellants up to 18 inches in diameter

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

- > Two orthogonal spectrometers
 - 128 view angles per spectrometer
 - 1.3 to 4.8 microns
 - > 1320 Hz for spectra
 - Full planar measurement at 10.3 Hz

Solid Propellant Plume Properties

Y. Sivathanu, J. Lim, L. E. Reinhart, and R. C. Bowman, (2007), "Structure of Plumes from Burning Aluminized Propellant Estimated using Fan Beam Emission Tomography," AIAA Journal, vol. 45, No. 9, pp. 2259-2266.

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906

Future Directions

- X-Ray based tomography for optically dense flames and sprays
- Engineering for specific applications

1201 Cumberland Ave., Suite R, West Lafayette, IN 47906