

An Overview

En'Urga Inc. 1201 Cumberland Avenue, West Lafayette, IN 47906

http://www.enurga.com

Motivation

- Spray drying used for producing powder from a liquid or slurry
- Food, pharmaceuticals, consumer products
- Can convert APIs from crystalline to amorphous form for improved bio-availability
- All spray dryers use some type of nozzles
- Quality of nozzle determines the final product quality

Outline

- Spray Characterization Methods
- Sample Results
- Spray characterization work at En'Urga Inc.

Spray Characterization Methods

Spray Characterization Methods

- Phase Doppler interferometry
- Fraunhofer diffraction
- Laser sheet imaging
- Extinction tomography
- Imaging velocimetry
- Holographic imaging
- Laser induced Fluorescence
- X-Ray visualization

Phase Doppler Interferometry

- Fringe pattern from2 laser beams
- Particle scatters light and projects pattern
- Detector at one angle provides velocity
- Multiple detectors provide size
- Multiple setting required for wide dynamic range

Measurement Characteristics

Aerosol limitations	Spherical, transparent/opaque			
Distance to sample	< 3m			
Probe volume	small			
Size	1-500µm			
Number limitation	Coincident, extinction			
Sampling type	Flux dependent			
Measured quantities	Velocity, size			
Dynamic range	50			
Sampling mode	Time averaged, time resolved			
Sensitivity highest	large drops			

Fraunhofer Diffraction

- Scattered intensity from laser beam
- Fourier transform lens for discrimination
- Array detectors measures intensity at different angles
- Mie scattering theory for particle size
- Beam wandering a problem in evaporating fluids

Measurement Characteristics

Aerosol limitations	None on shape/better if opaque			
Distance to sample	< 0.5 m			
Probe volume	Line of sight			
Size	0.3-500 μm			
Number limitation	Extinction, multiple scattering			
Sampling type	Concentration			
Measured quantities	Size			
Dynamic range	100			
Sampling mode	Time averaged, time resolved			
Sensitivity highest	Middle range of drop sizes			

Laser Sheet Imaging

- Laser sheet to illuminate spray
- Image taken using a CCD camera at an oblique angle
- Intensity proportional to drop surface area per unit volume

Potential Errors

- Laser extinction
- Signal attenuation
- Secondary emission

Measurement Characteristics

Aerosol limitations	Spherical particles		
Distance to sample	< 0.5 m		
Probe volume	Planar, volume		
Size	3-unlimited		
Number limitation	Extinction, image overlap		
Sampling type	Concentration dependent		
Measured quantities	Light intensity		
Dynamic range	20		
Sampling mode	Instantaneous		
Sensitivity highest	Largest drops		

Principle of Operation

- Path integrated extinction of laser sheets
- Multiple view angles for non-axisymmetric turbulent flows
- Multiple slices to obtain high spatial resolution
- Local extinction coefficients obtained by statistical tomography (MLE method)
- For liquid sprays, the local extinction coefficients is equal to the drop surface areas per unit volume

Measurement Characteristics

Aerosol limitations	Unrestricted		
Distance to sample	Unrestricted		
Probe volume	Planar		
Size	Unrestricted		
Number limitation	Extinction		
Sampling type	Concentration		
Measured quantities	Surface area * no. of drops/m ³		
Dynamic range	Instrument SNR		
Sampling mode	Instantaneous, time averaged, time resolved		
Sensitivity highest	Uniform across range		

Imaging Velocimetry

- > Two types available
- Planar Particle Imaging Velocimetry and Statistical Pattern Imaging Velocimetry
- First type tracks individual particles and determines displacement
- Second type tracks flow patterns and determines peak spatial correlations over a fixed time window

Advantages and Disadvantages of SPIV

Advantages

- Does not require distinct particles
- Works with various types of lighting such as shadowgraphy and natural lighting
- Work equally well with dense sprays
- High powered lasers not required

<u>Disadvantages</u>

- Bimodal velocity difficult to resolve
- Longer computational time required
- Minimum 10 KHz camera

Holographic Imaging

- Scattered or shadow images mixed with a reference beam
- Interference pattern on holographic film
- Image reconstructed to obtain particle size/shape

Planar Laser Induced Fluorescence

- Fuel, sometimes mixed with Dopant
- Excited with laser sheet
- Fluorescence observed with CCD array
- Intensity proportional to volume fraction

- Ideal for dense sprays (light cannot penetrate)
- Used to obtain planar mass concentration
- Works with particles, gases, and liquids

Comparison of Methods

Measurement Characteristics	Light Scattering Interferometry	Fraunhofer Diffraction, Ensem	Light Sheet Imaging	Extinction Tomography
Basic Measurement	Diameter/Velocity	Diameter	Pattern	Surface area
Accuracy	+/- 20%	+/- 20%	Not quantitative	+/- 2%
Particle Shape Restriction	Spherical	Sphere, Irregular	Spherical	none
Particle Composition	Transparent, Opaque	Better if opaque	None	none
Index of Refraction Dependence	Yes	Partial/none	None	None/Imaginary
Working distance (Trans to Det)	3 m	0.5 m	0.5m	Unlimited
Sample Volume	Small, Point	Line of site	Plane/volume	Plane/volume
Sample Volume Bias	Yes, Correction	None	Yes, Correction	None
Size Minimum, mm	0.3	0.3	3	Unlimited
Maximum size	1,000	500	unlimited	Unlimited
Number Density Maximum	Coincid/extinction	Extinction/MultiScat	Extinction/overlap	Extinction
Number Density Minimum	None	Yes, Low SNR	Blank Images	Low SNR
Sampling Type	Flux Dependent	Concentration	Concentration	N/A
Sampling Mode	Time ave/	Instantaneous/	Instantaneous	Time Ave, Time
	Time Resolved	Time Reolved		Resolved, Instant
Size Dynamic Range	50	50	20	N/A
Particle Velocity	Yes	No	Possible	Possible
Number Density Measurements	Yes	Yes, With extinction	Yes	Yes
Measurement Sensitivity	Highest for largest	Highest for middle	Highest for largest	Uniform across range

Why surface area density

- Total amount of fuel or liquid evaporated is proportional to heat release rate in combustion and solid mass fraction in spray drying.
- Correlation coefficient (R) of different parameters with total fuel evaporated
- Mass flux R = 0.903 Velocity R = -0.239
- Diameter = 0.681 Surface area density = 0.961

For combustion and spray drying applications, surface area density is optimal method of comparing different nozzles or checking uniformity

Sample Results En'Urga Inc.

En'Urga Inc.

Sample Results (Malvern)

Sample Measurement (effect of vapor)

Effect of fuel vapor (beam wandering) is to cause spurious readings of large drops

Recommendation is to neglect reading of first 9 rings or all drops larger than 150 microns

Injector manufactures report

Sample Results Patternator

- Struts signature seen in drop surface area map ≻ Hollow cone seen as hollow
- Drip from nozzle seen at the center

Sample Result: Agricultural Nozzle

Sample results from X-Ray

- Deconvoluted results of mass fraction of water
- ➢ With SPIV, provides mass flux within 5%
- With patternator provides drop size within 20%

SPIV shadowgraphy (penetration velocity)

Sample Results SPIV

GDI Injector at 20 MPa

PDA vs Patternator

Velocimeter vs PDA

Planar drop sizer

Fluorescence tomography

