Extinction Tomography for Spray

An Overview

En'Urga Inc.

1291-A Cumberland Avenue, West Lafayette, IN 47906

765-497-3269

765-463-7004

http://www.enurga.com

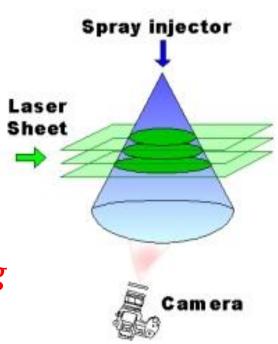
Outline

- > Optical patternator (visible light)
- > X-Ray patternator (soft X-Rays)

Optical patternator

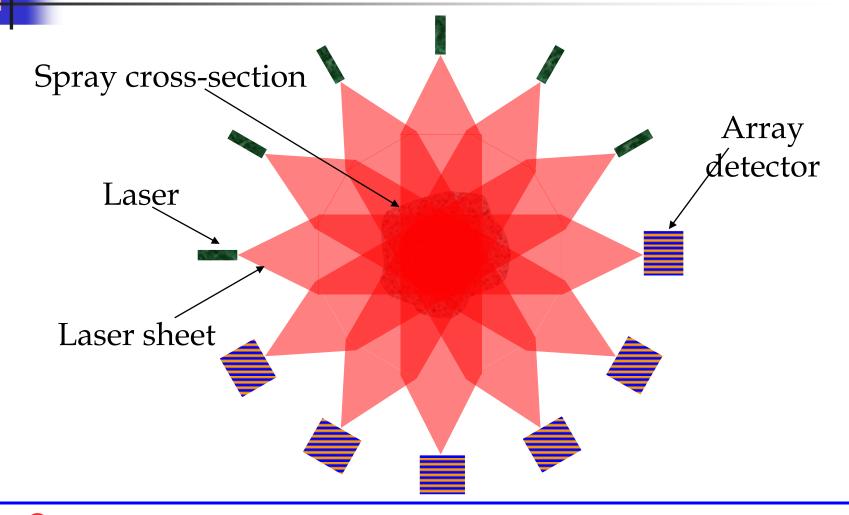
Advantages of optical patternator

- > Fast, capable of obtaining transient data
- > Greater reproducibility than mechanical devices
- > Does not interfere with the spray
- > Greater spatial resolution
- > Low maintenance and operational cost

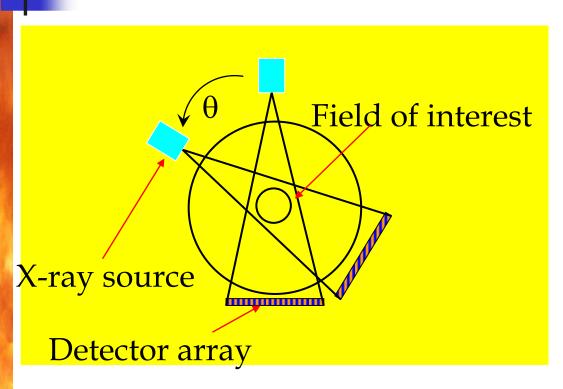


Principal Types of Optical Patternators

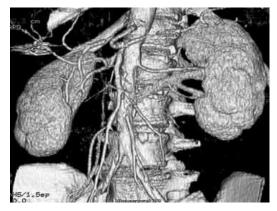
- **➤** Laser sheet imaging (Mie scattering)
- > Planar Laser Induced Fluorescence
- > Extinction based systems


First two methods have errors arising from laser extinction, signal attenuation, and secondary emission Not used for quantitative patternation

The SETScan Patternator


Principle of Operation

- > Path integrated extinction of laser sheets
- > Multiple view angles for non-axisymmetric turbulent flows
- > Multiple slices to obtain high spatial resolution
- ➤ Local extinction coefficients obtained by statistical tomography (MLE method)
- > For liquid sprays, the local extinction coefficients is equal to the drop surface areas per unit volume



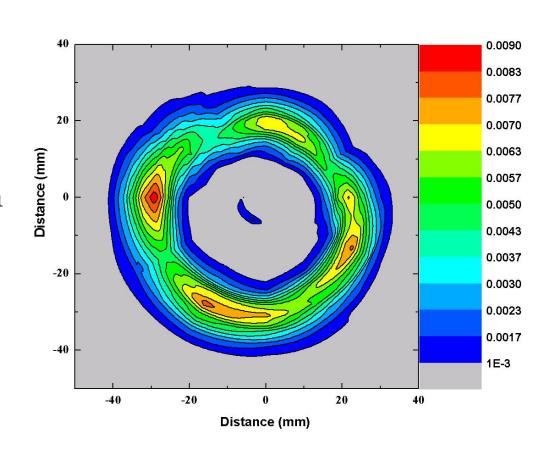
Primer on Tomography

Most successful medical diagnostic tool!

- ➤ Fast ⇒ Up to 10 KHz, transient patternation of fuel injector sprays
- **>** Extinction ⇒ Well developed technique
- \rightarrow MLE Deconvolution \Rightarrow Accurate (+/- 2%)
- **→** High repeatability (+/- 2% on patternation number)
- \triangleright Six-axis \Rightarrow Angular resolution up to 5 degrees
- \gt 512 element array \Rightarrow Spatial resolution up to 0.2 mm

Comparison with Competitive Technology

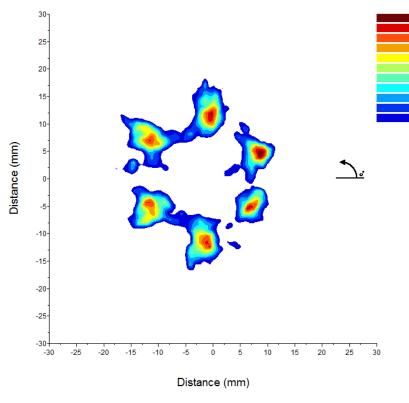
- ➤ Extinction ⇒ Immune to environmental lighting
- \triangleright Diode lasers \Rightarrow Class II, No safety issues
- ➤ Monolithic ⇒ Out-of-box factory floor deployment
- \triangleright Adaptive grids \Rightarrow Alignment of nozzle not critical
- \triangleright Advanced GUI \Rightarrow Easily operated by technician
- \triangleright Reliable \Rightarrow 100% quality assurance of nozzles


Only quantitative (+/- 2% on absolute values, +/- .5% repeatability) patternator on the market

Sample: Aircraft Engine Nozzle

- Struts signature seen in drop surface area map
- ➤ Hollow cone seen as hollow
- Drip from nozzle seen at the center
- ➤ High flow rate ~ 200 kg/hr

Interpretation of Data


- > The data is the ensemble average of drop surface area per unit volume
- > Differs from mechanical patternator (which is time average of mass flux)
- > High surface area indicates streaks
- > Low surface area indicates voids
- > 95% ring typically used for spray angle

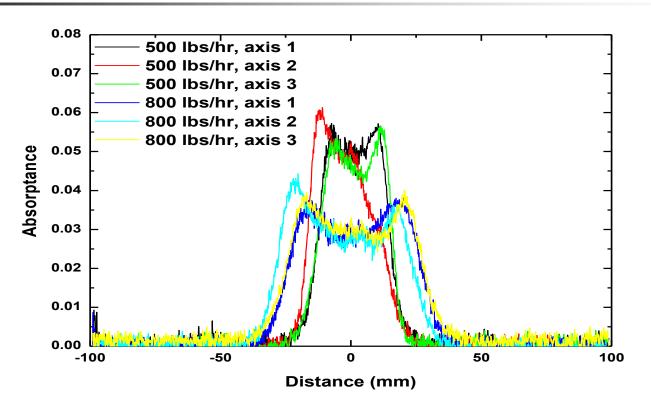
Automotive Injector

% area in
plume
19.32
4.69
21.71
17.91
23.06
12.93
Mean centroid
(
(y, mm)
(y, mm) -5.69
-5.69
-5.69 14.28
-5.69 14.28 1.97

Reliable data with multiple orifice injectors

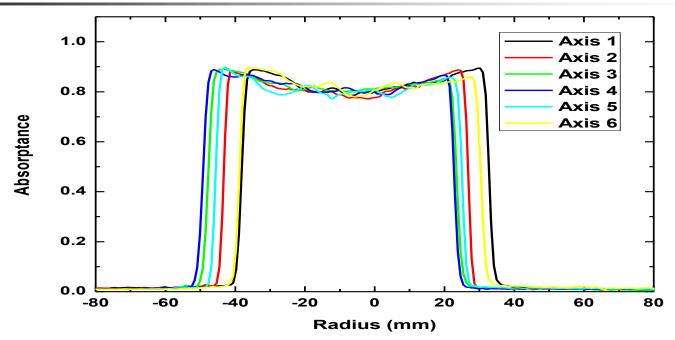
X-Ray Patternator

Open source design



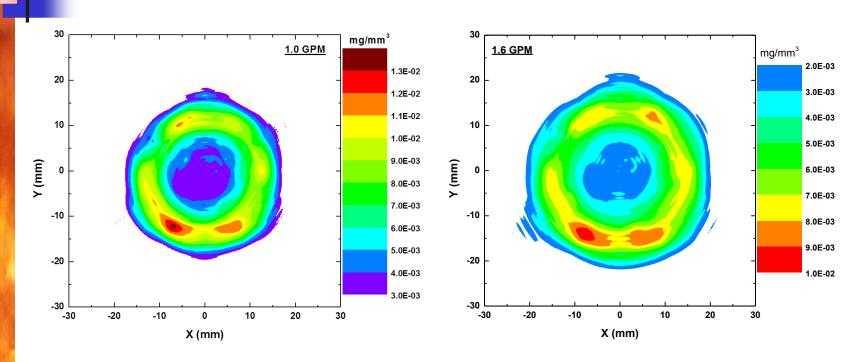
Three sources in fan beam configuration within a 12 ft x 12 ft x 6 ft lead lined chamber

Absorptance Measurements in Sprays



- ➤ Peak absorptance < 10% implies can look at tons/hr
- Larger flow rate has wider spread

Comparison with optical patternator

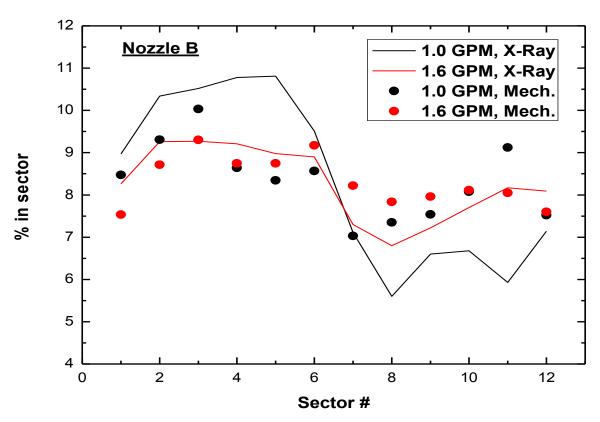


- > 500 lbs/hr
- ➤ Mean peak value at 0.92
- ➤ Instantaneous value exceeds 0.99 occasionally
- ➤ If drops are smaller, even this flow rate is not feasible

Mass Concentration Maps

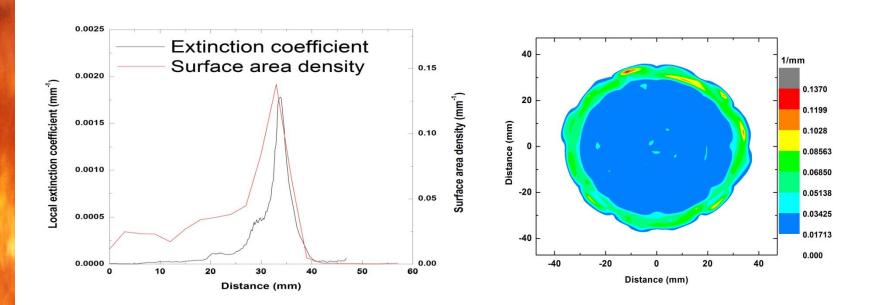
- Deconvoluted results of mass fraction of water
- Lower flow rate has higher local concentration
- ➤ High flow rate had larger footprint

Mechanical Patternator for Validation



Twelve sector patternator commonly used by the aircraft industry

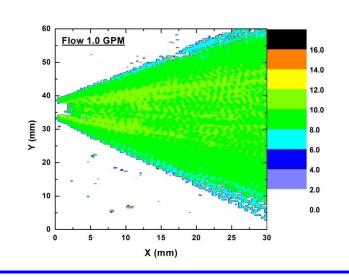
Validation (Mechanical Patternation)



- > Similar trends with flow rates and angle
- Results agree with uncertainty of mechanical patternator

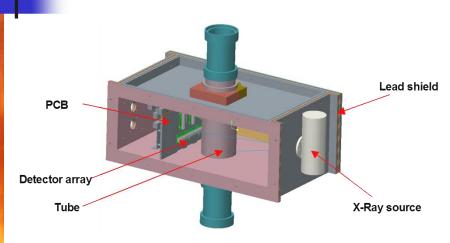
Validation (Optical patternator)

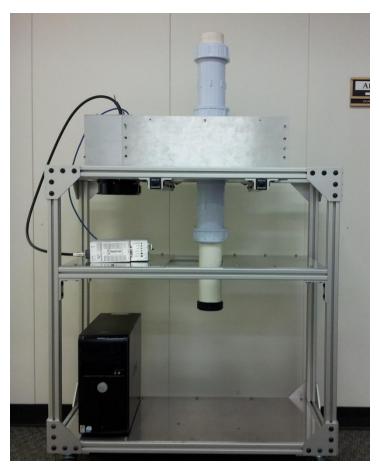
- Radial peak location very similar (only one condition)
- > SMD (from mass concentration/surface area) is 141 μm (nozzle specification is 125 μm)



Validation (Total flow)

Nozzle	Input Flow (kg/hr)	Total planar mass (mg/mm)	Mean velocity (m/s)	Planar mass flux (kg/hr)
А	227	10.2	5.72	211
А	363	11.1	8.86	353
В	227	7.20	9.44	245
В	363	7.52	14.5	392


- Velocity measured using Statistical Pattern Imaging velocometer
- Nozzle A results match flow meter to within 5%
- Nozzle B results match flow meter to within 10%
- Results validate X-Ray measurements within the uncertainty of flow meter and velocimeter



Single Axis System

- > Nozzle rotate six times to get planar information
- > Transient information not available
- > Smaller size sprays

Selected Patternator Customers

Abbott	General Motors	Hitachi	
Bend Research	Cummins	AVL	
Pfizer	Emcom Technologies	FEV	
S.C. Johnson & Son	Faurecia	Nordson	
Catalytica Energy	Donaldson	Delavan	
Delphi	Proctor & Gamble	Woodward	
Ricardo	Honeywell	Tenneco	
Continental	Bombardier	Synerject	
Eaton	Rolls Royce	Danfoss	
Columbian Chemical	General Electric	Boston Scientific	
United Technologies Aerosapce System	Dow Agrosciences Laboratories	Vertex Pharmaceuticals	
Toyota	Bosch LLC.	3M	

