Application of Extinction and Emission Tomography to Structure Determination in Aircraft and Rocket Engines

> Yudaya Sivathanu En'Urga Inc. 1291-A Cumberland Avenue West Lafayette, IN 47906

Acknowledgement: The author acknowledges the support provided by the National Science Foundation and the National Aeronautics and Space Administration for this work.

i'Urga Inc.

Outline

- > Background
- Extinction Tomograpy
- Emission Tomography
- Concluding Remarks

Background

- Non-intrusive path-integrated measurement at multiple angles and multiple slices at each angle
- Deconvolute measurements to obtain local properties

Common Non-Optical Techniques

Capacitance

- Resistance (Conductance)
- > Microwave
- Acoustic

Electrical Capacitance Tomography

Measures capacitances between pairs of electrodes
 Distribution of permittivity

REINECKE N. and MEWES D., (1996), Recent developments and industrial/research applications of capacitance tomography, Meas. Sci. Technol. 7 pp 233-246

Measurement Characteristics

Frequency	100 Hz		
Resolution	~ 150 points (8 electrode system)		
Materials	Non-conducting		
Accessibility to flow	Not required		
Algorithm	Back Plane Projection		
Applications	Oil pipelines		
	Fluidized beds		
	Cryogenic flow		

REINECKE N. and MEWES D., (1996), Recent Developments and industrial/research applications of capacitance tomography, Meas. Sci. Technol. 7 pp 233-246

Sample Result

Byars, M., 2001, "Developments in electrical capacitance tomography," 2nd World Congress on Industrial Process Tomography, Hannover, Germany.

Electrical Resistance Tomography

- Measures resistance between pairs of electrodes
- Distribution of conductivity/impedance
- Similar arrangement to internal capacitance probe
- Combination of both types used

Wang, M., Mann, R., and Dickin, F. J., (1999), Electrical resistance tomographic sensing systems for industrial applications', *Chem. Eng. Comm.*, Vol. 175, pp.49-70

Measurement Characteristics

Frequency	100 Hz		
Resolution	~ 150 points (8 electrode system)		
Materials	Conducting		
Accessibility to flow	Required		
Algorithm	Back Plane Projection		
Applications	Water/oil mixtures		
	Molten metal processing		
	Concentration in mixers		

Microwave tomography

- Electromagnetic scattering by a dielectric object
 Antennas act as radiation and receiver
- $\blacktriangleright \quad \text{Amennus uct us rudiation una receive}$
- *Distribution of dielectric constant*

Wu, Z., Boughriet, A., McCain, H., Davis, L. E., and Nugroho, A. T., 2000, "Investigation of microwave tomographic imaging techniques for industrial processes," Proc. SPIE Conf. on Process Imaging for Automatic Control, p151-158.

Measurement Characteristics

Frequency	20 Hz (with microwave array)		
Resolution	~ 1000 points (32 x 32 array)		
Materials	Dielectric material		
Accessibility to flow	Not required		
Algorithm	Back Plane Projection		
Applications	Medical field		
	Wood, paper, textiles		
	Oil/water mixtures		

Acoustic Tomography

- Acoustic waves send through an object at many different angles
- Attenuation or wave speed in transmission tomography
- Acoustic impedance mismatch in reflection tomography

NASA Glenn high pressure combustor

Measurement Characteristics

Frequency	10 Hz		
Resolution	Medium		
Materials	Speed of sound variation		
Accessibility to flow	Not required		
Algorithm	FFT, Algebraic reconstruction		
Applications	Weld inspection		
	Two-phase flows		
	Oceanography (temperature)		

Extinction Tomography

Extinction Tomography

> Extinction measured at multiple view angles

Deconvoluted using tomography

En'Urga Inc.

> Challenge is that objects are moving

Measurement Considerations

- > Multiple view angles for non-axisymmetric flows
- > Multiple slices to obtain high spatial resolution
- > High speed for transient phenomena
- Extinction should be less than 0.99
- Local extinction coefficient obtained by statistical deconvolution
- > Optical access to flow required

Deconvolution Domain

Governing Equations

Equation of radiative transfer for one sample path

$$\exp(-K_{1}^{1}\Delta_{1}^{1} - K_{1}^{2}\Delta_{1}^{2} - K_{1}^{3}\Delta_{1}^{1}) = T_{1}^{1}$$

$$K_{1}^{1}\Delta_{1}^{1} + K_{1}^{2}\Delta_{1}^{2} + K_{1}^{3}\Delta_{1}^{1} = -\log(T_{1}^{1})$$

$$E\left\{K_{1}^{1}\Delta_{1}^{1} + K_{1}^{2}\Delta_{1}^{2} + K_{1}^{3}\Delta_{1}^{1}\right\} = E\left\{-\log\left(T_{1}^{1}\right)\right\}$$

$$\Delta_{1}^{1}E\left\{K_{1}^{1}\right\} + \Delta_{1}^{2}E\left\{K_{1}^{2}\right\} + \Delta_{1}^{1}E\left\{K_{1}^{3}\right\} = E\left\{-\log\left(T_{1}^{1}\right)\right\}$$

System of Equations

- For M view angles and N slices, MxN linear equations
- All unknown local extinction coefficients are positive
- LINPOS equations inverted using MLE method
- Method guarantees convergence to optimal solution
- Local extinction coefficient identical to local surface area per unit volume for spherical drops > wavelength of light
- Local extinction coefficient related to volume fraction of particulate for particle < wavelength of light

Algorithm Steps

- Input geometry of measurements
- Provide initial guess of local extinction coefficients
- Calculate theoretical path integrated transmittance
- Compare theoretical and measured transmittances
- Update local extinction coefficients using MLE method

Synthetic Data for Algorithm Verification

En'Urga Inc.

2 small highly absorbing region Minimum transmittance < 0.10

$$f(r) = \frac{1}{\sigma R \sqrt{2\pi}} \exp(-\left[(r/\sigma R)^2\right]/2)$$

Very difficult to resolve using alternate methods

Rigorous test of the algorithm

Output from Algorithm

En'Urga Inc.

Peak local extinction coefficient is 93% of input (6 x 256 array) RMS fitting error defined as:

$$\operatorname{Err} = \sqrt{\sum_{i=0}^{N} \left(\tau_{\operatorname{syn}}^{i} - \tau_{\operatorname{dec}}^{i}\right)^{2} / N}$$

RMS error is less than 1%

Jongmook Lim and Yudaya Sivathanu, (2005), "Optical Patternation of a Multihole Nozzle" Atomization and Sprays, vol. 15, pp. 687-698.

SETscan Patternator

High frequency, optical patternator for sprays

Sample Result: Aircraft Engine Nozzle

Ensemble average of drop surface area density
 High/low surface area indicates streaks/voids

Quality Assurance: Aircraft Engine Nozzle

Summary Report (0 <600p625	_new_Test_Po	int_8.scn> _ 🗆 🗙
Spray Angle (degree)			
Method Line Integra	ition 💌	Major Axis	91.30
		Minor Axis	92.25
Deviation Angle (degre	e)		
			0.85
		Center (x,y)	(-0.58,0.96)
Patternation Number			
			0.1498
Method (Max-Min)/	'Mean 💌	Sector No.	24 💌
<u>p</u>			
Estimated RMS/MEAN	of Total Surfac	e Area 🛛	
RMS	0.0415	1	
Deconvoluted Total Su	, Irface Area on E	ntire Domain –	
Samples Used:	10000	Area(mm^2)	72.3647
Max. Radial Surface Ar	' ∙ea∕Volume (1/m	(m)	
		·	0.00715
Max. Angular Deviation	n (Gamma)		
May Angular L2 Norm			0.02870
Max. Angular Ez Nollin			0.031

Emission Tomography

Typical Experimental Arrangement

En'Urga Inc.

Either parallel path or fan beam arrangement
 Intensity measured at multiple view angles
 Deconvoluted using tomography

Measurement Considerations

- > High temperature objects (typically flames)
- > Intensity is related to temperature and emissivity
- > Highly non-linear in temperature
- Emissivity is typically unknown
- > Multiple wavelength measurements used
- Self absorption for optically thick systems

Relevant Equations

 $I_{1,\lambda} = I_{1,b\lambda} (1 - \tau_{11})$ $I_{2,\lambda} = I_{1,b\lambda} [(1 - \tau_{23}) \cdot \tau_{22} \cdot \tau_{21} + (1 - \tau_{21})] + I_{1,b\lambda} (1 - \tau_{21}) \cdot \tau_{21}$

En'Urga Inc.

Non-linear equations, difficult to solve

$$\frac{\text{Linearize Equations}}{I = I_b \cdot (1 - e^{-k\Delta})}$$
$$\log(I) = \log(I_b) + \log(1 - \tau)$$
$$\log(I_b) \cong A + BT$$
$$\log(1 - e^{-k\Delta}) = \log(1 - \tau) \cong C + DX + EY + FT$$
$$\log(I) = D \cdot X + E \cdot Y + (B + F) \cdot T + A + C$$

J. Lim, Y. Sivathanu, J. Ji, and J. Gore, (2004), "Estimating Scalars from Spectral Radiation Measurements in a Homogeneous Hot Gas Layer," Combst. Flame, vol. 137, p. 222-229.

Constants in Equations

From databases such as RADCAL, HITRAN

$$A = -\frac{\partial \log(I_b)}{\partial T} T_0 + \log(I_b(T_0)) \qquad B = \frac{\partial \log(I_b(T_0))}{\partial T}$$
$$C = -\frac{\partial \log(\alpha(X_0, Y_0, T_0))}{\partial X} x_0 - \frac{\partial \log(\alpha(X_0, Y_0, T_0))}{\partial Y} y_0 - \frac{\partial \log(\alpha(X_0, Y_0, T_0))}{\partial T} T_0 + \log(\alpha(X_0, Y_0, T_0))$$
$$D = \frac{\partial \log(\alpha(X_0, Y_0, T_0))}{\partial X} \qquad E = \frac{\partial \log(\alpha(X_0, Y_0, T_0))}{\partial Y}$$
$$F = \frac{\partial \log(\alpha(X_0, Y_0, T_0))}{\partial T}$$

Flow Chart for Solution

Validation method

- Use a well characterized flame
- Calculate intensities emitted using equation of radiative transfer
- Use calculated intensities as input to algorithm
- Compare algorithm output with input flame properties

Calculated Intensities (input to algorithm)

Converged Properties

Sample Implementation (Turbine Inlet)

Stochiometry cycled during series of 20 test at ~ 11 bar Gas temperature successfully estimated by method Homogeneous layer assumption

Sample Implementation (Turbine Blade Temperature)

30 bar power generation turbine, emission from blade Blade temperature and emissivity (for TBC monitoring)

Sample Implementation (Axisymmetric system)

Emission measured at 128 view angles

160 wavelengths obtained with ES100 imaging spectrometer

Evaluation in a Laminar Flame

Incipient Sooting Ethylene Flame Fuel Flow Rate: 2.30 cm³/sec Coflow Air: 713.3 cm³/sec

Measured spectral radiation intensities above burner exit

Sample Results

Estimated particulate concentrations, temperatures, and gas concentrations reasonably well

Sample Implementation (Non-axisymmetric)

Hydrogen/oxygen rocket engine (NASA Marshall-1500 PSI)

Sample Results

Sample Temperatures

Sample Implementation (Solid Propellant Plume)

Test in solid propellants up to 18 inches in diameter

- Two orthogonal spectrometers
- 128 view angles per spectrometer
- 1.3 to 4.8 microns
- > 1320 Hz for spectra
- > Full planar measurement at 10.3 Hz

Solid Propellant Plume Properties

Y. Sivathanu, J. Lim, L. E. Reinhart, and R. C. Bowman, (2007), "Structure of Plumes from Burning Aluminized Propellant Estimated using Fan Beam Emission Tomography," AIAA Journal, vol. 45, No. 9, pp. 2259-2266. En'Urga Inc.

Future Directions

- X-Ray based tomography for optically dense flames and sprays
- > Engineering for specific applications
- Process control based on selected features of the deconvoluted results
- Velocity estimation using Statistical Pattern Imaging techniques

