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Measurement Methods (High Temperature Gas)

TomographySpectroscopy using probes

Emission spectroscopy (UV, NIR, IR)Noise thermometry

Ultrasonic thermometryPhosphor Thermometry

Laser Induced FluorescenceThin Filament Pyrometers

Coherent Anti-Stokes RamanSemiconductor sensors

Spontaneous Raman ScatteringOptical Fiber

Raleigh ScatteringResistance Temperature Devices

Absorption SpectroscopyThermocouples (thin film, bead)

Non-contact Contact 
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• Infrared Emission/Absorption Spectroscopy for major 
gas species concentrations and temperature (Hanson et 
al., 1980; Best et al., 1991)

• Ultraviolet Emission/Absorption Spectroscopy for 
temperatures, OH concentrations (Vaidya et al., 1984)

• Coherent Raman Anti-stokes Spectroscopy (CARS) for 
radical concentrations and temperatures (Eckbreth et 
al., 1981, Durao et al., 1992) 

• Laser Induced Fluorescence for pollutant concentrations 
and temperature (Dec and Keller, 1986) 

• Infrared emission spectroscopy for major gas species 
concentrations and temperature (Zhu et al., 1997) 

Sample Studies: Laminar Flows
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Sample Studies: Turbulent Flame

• Two wavelength Near Infrared Emission Spectroscopy for  
temperatures and soot concentrations (Sivathanu and 
Faeth, 1990; Sivathanu et al., 1991, Hamins et al., 1995;
Gritzo et al., 1998)

• Four Wavelength Infrared Temperature Sensor for Gas 
Turbine Applications (Glasheen et al., 1998)

• Intrusive Infrared/NIR for temperatures, gas and soot 
concentrations (Sivathanu and Gore, 1991)

• CARS and Thin Filament Pyrometer for Temperature 
Measurements (Kelkar et al., 1997)
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IR Emission Spectroscopy

• Basic method is to obtain multi-wavelength 
spectral radiation intensity measurements

• Utilize these measurements to obtain structure 
information

• Measurement technology is well developed.
• Data reduction methods require additional 

development.
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Issues in Laminar Flows

• Steady state systems (low frequency)
• Spatial resolution critical 
• Absolute accuracy critical
• Relatively well established methods

Principally used for validating chemical kinetics 
and flow models



En’Urga Inc.
Siemens
Westinghouse

• Lens
• Chopper
• Spectrometer
• Detector
• Data acquisition system

Experimental Arrangement
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Calibration and Measurement Procedure
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Voltages (V) obtained from a standard blackbody at 
temperature T for different wavelengths ()

Ib is the Blackbody intensity, K is a calibration constant

C1 and C2 are known first and second radiation constants
For unknown signal:

Note: K can be a function of I requiring a more extensive 
calibration procedure.

  K/VI
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Data Analysis Requirements

• Spectral radiation intensities measured from 
a path in the hot gas.

• Obtain structure information from the 
measurements

• For laminar flames, different system specific 
methods of data reduction available
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Inversion Method

• Guess temperature and concentration 
• Utilize narrow band calculations to obtain intensities 
• Compare with measured intensities 
• Update guess of temperature and concentration 
• Iterative program needed 
• Difficulty is that emissivity depends on both 

concentration and temperature 
• Convergence problems for some iterative schemes 
• Simultaneous absorption measurement allows easier 

methods
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HOMOGENEOUS PATHS

Spectral Radiation Intensity(I) for homogeneous path

Emissivity () depends on mole fraction (Xi), partial
pressures (Pi) and thermodynamic temperature (T).

• Gas species of interest: CO2, H2O, CO and CH4

• Emissivity:  Narrow band model (RADCAL, Hitran)
• Amplitude uncertainty: 10% 
• Wavelength uncertainty: 40 to 50 nm at 4.5 microns 
• Maximum pressure range:  10 atmospheres   

bii I)T,P,X(I  
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NARROW BAND MODEL (RADCAL)
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Flow Chart for Iterative Program

Guess temperature of segment

Guess gas concentrations

Calculate intensity

Compare with measured intensity

Update 
concentrations 
using MLE 
method

Error1 converged
N

Y

Update 
temperature 
using Fibonnaci
method

Error2 converged
N

EXIT

Y
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Evaluation in Laminar Flame
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Deconvolution Results

211218402011T(K) (= 0.86)

0.166-------0.168H2O( = 0.86)
------0.0830.074CO2( = 0.86)

203418401940T(K) (= 0.81)

0.157-------0.158H2O ( = 0.81)

------.0780.070CO2 ( = 0.81)

Theoretical
(Adiabatic)

Thermoco
uple/GC

Emission 
spectroscopy

Quantity
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Sample Radiation Intensities from a Transient Flame 
Experiment at the Japanese Microgravity Facility

Intensity Data from Microgravity Experiment
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• Spectral intensity 
data collected using 
a stand alone data 
logger

• Ten seconds of data 
collected at a scan 
rate of 300 Hz

• Temperature and gas 
concentrations 
obtained assuming 
homogeneous paths

Deconvolution Results
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Issues in Turbulent Flow

• Intrusive probes – effect on structure
• Tomography – turbulence/radiation interactions
• Temporal resolution – sufficiently fast
• Spatial resolution – small scales

Principally used for validating turbulent flow 
models.  Most industrial high temperature 
flows are turbulent.
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Issues faced by Industry

Control of the combustion process: reduce pollutants, 
increase efficiency, product lifetime

• What temperature and where?
Instantaneous/average temperature
At all locations/highest temperature location

• Control signals?
Absolute values/trends?
Correlated with pollutants, efficiency, thermal stress

Ideal situation is to have a single control variable that is 
“indicative” of the parameter being monitored. Eg.  Total pollutant 
emitted, Stability index
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Equation of Radiative Transfer (Non-homogeneous Paths)
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Intensity Calculations for Turbulent Flows

I (J) = I (J-1)J + J Ib(J)

• Discretized equation of Radiative Transfer
• Calculation started from cold or hot boundary
• For laminar flames, relative straightforward
• For turbulent flames, turbulence/radiation 

interactions are important
• Spatial and temporal correlations modeled using 

Monte Carlo or Time Series Methods
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Detector

Turbulent premixed flame

Volume cross-section

Premixed burner

r

x

• Statistically simulate the instantaneous temperature 
and gas concentrations in a small control volume

• Obtain total heat release rate and pollutants produced 
in the control volume

• Simultaneously obtain signatures of possible 
measurement variables within the control volume

Statistical simulation of Combustor Volume
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• Temperature and gas concentrations fluctuate  
• Experimental data used to create 1000 sample realizations
• Simple reaction models for heat release rate and pollutant formation
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Sample temperature realizations in the control volume
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Estimated temperature (K)

1100 1200 1300 1400 1500

P
la

nc
k 

w
ei

gh
te

d 
te

m
pe

ra
tu

re
 (K

)

1100

1200

1300

1400

1500

Correlation between Planck Function Temperature and 
Temperatures Estimated using Emission Spectroscopy
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Quantity Mean RMS Correlation 
T* (0.30 m) 1611 K 36 K 0.6011
T* (2.52 m) 1327 K 54 K 0.995
T* (4.26 m) 1255 K 60 K 0.984

Tmax 1529 K 295 K 0.293
Tmax/2 1294 K 325 K 0.289
TC/L 1118 K 301 K 0.176
Tavg 1118 K 71 K 0.925

T (ES100) 1285 K 59 K 0.965
a(2.64 m) 0.991 0.00055 -0.224
a(4.26 m) 0.493 0.0237 -0.315

T* is the Planck-Function weighted average temperature of 
the control volume (function of wavelength)

)1)I/C(ln(
C*T 5

2
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Correlation of different variables with the instantaneous heat release
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Industrial Ranking of Methods

2885Maintenance

22210Longevity

1331Operational ease
14415Intrusive
24410Utility

810102Manufacturing cost

205102Development cost
0880Sources
10441Detector

IR 
Emission

UV 
Emission

Absorption 
Spectroscopy

Thermo-
couples

Category
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High Speed Spectrometer

Model ES100
Entrance slit

Fold mirror 1

Fold mirror 2

two 1” equilateral 
CaF  prisms2

Detector

4.7 m

1.3 m

Janos A8037-246
(off-axis parabola)

Janos A8037-164
(off-axis parabola)

Janos A8037-146
(off-axis parabola)

aperture
stop
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Typical Spectra from a Turbulent Flame
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Measurements from a Turbine Inlet
• Spectral intensity 

data collected at 
1320 Hz

• Very high 
repeatability for 
mean intensities

• Temperature and gas 
concentrations 
obtained assuming 
homogeneous paths
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• Temperature and gas 
concentrations obtained 
using iterative algorithm

• Calculations assumed 
lack of methane and CO 
in the primary zone

• Temperature from ES100 
correlated with NOX

• Temperature from 
thermocouple is not 
correlated with NOX

Westinghouse Turbine at NRC
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• Results similar for data 
obtained with water 
addition 

• Temperature from 
ES100 correlated with 
NOX

• Temperature from 
thermocouple is not 
correlated with NOX

Westinghouse Turbine at NRC
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Kerosene Spray Flame Data
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• Temperature from 
ES100 correlated with 
global equivalence ratio

• No thermocouple data 
available

• Global equivalence 
ratio is also a direct 
measure of power 
output or heat release 
rate
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High Pressure Data including Blade Radiation
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Blade Temperature Estimation
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• Radiation from blades 
synchronized to data 
collection

• Intensity measurement 
spread over three blades

• Four gas band free 
wavelengths used to 
estimate temperature

• Mean Temperature is 
1273 K and mean 
emissivity is 0.85
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Current Uses of Infrared Emission Spectrometer

Fundamental studies of turbulent flame structure

• Sandia National Laboratories, NIST, NASA, DoD, 
varied universities

Radiation from turbines and internal engines

• Westinghouse, KIMM

Steel, Aluminum, and Molten Glass  Manufacturing

• Pohang Steel Company, KAIST, Alcoa, etc.
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Future Directions in Infrared Emission Spectroscopy

• Hyper spectral scanning

• Multiple Element Sensors

• Advanced deconvolution algorithm

• Hyper speed spectral scanning
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Non-Homogeneous Fields

Non-homogeneous 
field

• Multiple view angles and slices
• Tomography for Local transmittances/emission intensities
• Absorption measurements are typically required


