Infrared Spectroscopy for High Temperature Estimation in Gases

Yudaya Sivathanu En'Urga Inc. 1291 Cumberland Av., West Lafayette, IN 47906

Nancy Ulerich Siemens Westinghouse Power Corp. 1310 Beulah Rd., Pittsburgh, PA 15235

<u>Acknowledgement</u>: This work was completed with support provided by NASA, NIST, and the Department of Energy.

Outline

- Background
- Laminar Flow Results
- Turbulent Flow Issues
- Applications to Turbulent Flow

Measurement Methods (High Temperature Gas)

Contact	Non-contact
Thermocouples (thin film, bead)	Absorption Spectroscopy
Resistance Temperature Devices	Raleigh Scattering
Optical Fiber	Spontaneous Raman Scattering
Semiconductor sensors	Coherent Anti-Stokes Raman
Thin Filament Pyrometers	Laser Induced Fluorescence
Phosphor Thermometry	Ultrasonic thermometry
Noise thermometry	Emission spectroscopy (UV, NIR, IR)
Spectroscopy using probes	Tomography

Sample Studies: Laminar Flows

- Infrared Emission/Absorption Spectroscopy for major gas species concentrations and temperature (Hanson et al., 1980; Best et al., 1991)
- Ultraviolet Emission/Absorption Spectroscopy for temperatures, OH concentrations (Vaidya et al., 1984)
- Coherent Raman Anti-stokes Spectroscopy (CARS) for radical concentrations and temperatures (Eckbreth et al., 1981, Durao et al., 1992)
- Laser Induced Fluorescence for pollutant concentrations and temperature (Dec and Keller, 1986)
- Infrared emission spectroscopy for major gas species concentrations and temperature (Zhu et al., 1997)

Sample Studies: Turbulent Flame

- Two wavelength Near Infrared Emission Spectroscopy for temperatures and soot concentrations (Sivathanu and Faeth, 1990; Sivathanu et al., 1991, Hamins et al., 1995; Gritzo et al., 1998)
- Four Wavelength Infrared Temperature Sensor for Gas Turbine Applications (Glasheen et al., 1998)
- Intrusive Infrared/NIR for temperatures, gas and soot concentrations (Sivathanu and Gore, 1991)
- CARS and Thin Filament Pyrometer for Temperature Measurements (Kelkar et al., 1997)

IR Emission Spectroscopy

- Basic method is to obtain multi-wavelength spectral radiation intensity measurements
- Utilize these measurements to obtain structure information
- Measurement technology is well developed.
- Data reduction methods require additional development.

Issues in Laminar Flows

- Steady state systems (low frequency)
- Spatial resolution critical
- Absolute accuracy critical
- Relatively well established methods

Principally used for validating chemical kinetics and flow models

Experimental Arrangement

- Lens
- Chopper
- Spectrometer
- Detector
- Data acquisition system

Calibration and Measurement Procedure

Voltages (V_{λ}) obtained from a standard blackbody at temperature T for different wavelengths (λ)

$$\mathbf{V}_{\lambda} = \mathbf{K}_{\lambda} \mathbf{I}_{\lambda \mathbf{b}}$$

 $I_{\lambda b}$ is the Blackbody intensity, K_{λ} is a calibration constant

$$\mathbf{I}_{\lambda \mathbf{b}} = \frac{\mathbf{C}_1}{\lambda^5 (\exp(\mathbf{C}_2 / \lambda \mathbf{T}) - 1)}$$

 C_1 and C_2 are known first and second radiation constants For unknown signal: $I_{\lambda} = V_{\lambda} / K_{\lambda}$

Note: K_{λ} can be a function of I_{λ} requiring a more extensive calibration procedure.

Urga Inc.

Data Analysis Requirements

- Spectral radiation intensities measured from a path in the hot gas.
- Obtain structure information from the measurements
- For laminar flames, different system specific methods of data reduction available

Inversion Method

- Guess temperature and concentration
- Utilize narrow band calculations to obtain intensities
- Compare with measured intensities
- Update guess of temperature and concentration
- Iterative program needed
- Difficulty is that emissivity depends on both concentration and temperature
- Convergence problems for some iterative schemes
- Simultaneous absorption measurement allows easier methods

HOMOGENEOUS PATHS

Spectral Radiation Intensity(I_{λ}) for homogeneous path $I_{\lambda} = \epsilon_{\lambda}(X_i, P_i, T)I_{\lambda b}$

Emissivity (ϵ_{λ}) depends on mole fraction (X_i) , partial pressures (P_i) and thermodynamic temperature (T).

- Gas species of interest: CO₂, H₂O, CO and CH₄
- Emissivity: Narrow band model (RADCAL, Hitran)
- Amplitude uncertainty: 10%
- Wavelength uncertainty: 40 to 50 nm at 4.5 microns
- Maximum pressure range: 10 atmospheres

NARROW BAND MODEL (RADCAL)

Species	Band	Method
	2.0 µm	modeled
	2.7 µm	modeled
\mathbf{CO}_2	4.3 µm	modeled
	10.0 µm	modeled
	15.0 μm	tabulated
	1.38 µm	
	1.88 µm	
H ₂ O	2.70 µm	tabulated
	6.30 µm	
	20 to 200 µm	
CO	4.6 µm	modeled
CH ₄	2.4 µm	
	3.3 µm	tabulated
	7.7 μm	tabulated
soot	0.4 to 2000 µm	modeled
		Siemens
Inc.		Westing

Flow Chart for Iterative Program

Evaluation in Laminar Flame

Westinghouse

Deconvolution Results

Quantity	Emission spectroscopy	Thermoco uple/GC	Theoretical (Adiabatic)
$CO_2 (\Phi = 0.81)$	0.070	.078	
$H_2O (\Phi = 0.81)$	0.158		0.157
$T(K) (\Phi = 0.81)$	1940	1840	2034
$CO_2(\Phi = 0.86)$	0.074	0.083	
$H_2O(\Phi = 0.86)$	0.168		0.166
$T(K) (\Phi = 0.86)$	2011	1840	2112

Intensity Data from Microgravity Experiment

Sample Radiation Intensities from a Transient FlameExperiment at the Japanese Microgravity FacilitySiemensSiemensEn'Urga Inc.Westinghouse

Deconvolution Results

- Spectral intensity data collected using a stand alone data logger
- Ten seconds of data collected at a scan rate of 300 Hz
- Temperature and gas concentrations obtained assuming homogeneous paths

Issues in Turbulent Flow

- Intrusive probes effect on structure
- Tomography turbulence/radiation interactions
- Temporal resolution sufficiently fast
- Spatial resolution small scales

Principally used for validating turbulent flow models. Most industrial high temperature flows are turbulent.

Issues faced by Industry

Control of the combustion process: reduce pollutants, increase efficiency, product lifetime

- What temperature and where? Instantaneous/average temperature At all locations/highest temperature location
- Control signals? Absolute values/trends? Correlated with pollutants, efficiency, thermal stress

Ideal situation is to have a single control variable that is "indicative" of the parameter being monitored. Eg. Total pollutant emitted, Stability index

Equation of Radiative Transfer (Non-homogeneous Paths)

Intensity Calculations for Turbulent Flows

Discretized equation of Radiative Transfer

- Calculation started from cold or hot boundary
- For laminar flames, relative straightforward
- For turbulent flames, turbulence/radiation interactions are important
- Spatial and temporal correlations modeled using Monte Carlo or Time Series Methods

Statistical simulation of Combustor Volume

- Statistically simulate the instantaneous temperature and gas concentrations in a small control volume
- Obtain total heat release rate and pollutants produced in the control volume
- Simultaneously obtain signatures of possible measurement variables within the control volume

Sample temperature realizations in the control volume

- Temperature and gas concentrations fluctuate
- Experimental data used to create 1000 sample realizations
- Simple reaction models for heat release rate and pollutant formation

Correlation between Planck Function Temperature and Temperatures Estimated using Emission Spectroscopy

Correlation of different variables with the instantaneous heat release

Quantity	Mean	RMS	Correlation
T* (0.30 μm)	1611 K	36 K	0.6011
T* (2.52 μm)	1327 K	54 K	0.995
T* (4.26 μm)	1255 K	60 K	0.984
T _{max}	1529 K	295 K	0.293
T _{max/2}	1294 K	325 K	0.289
T _{C/L}	1118 K	301 K	0.176
T _{avg}	1118 K	71 K	0.925
T (ES100)	1285 K	59 K	0.965
a_{λ} (2.64 µm)	0.991	0.00055	-0.224
a_{λ} (4.26 µm)	0.493	0.0237	-0.315

T* is the Planck-Function weighted average temperature of the control volume (function of wavelength)

Т

rga Inc.

$$* = \frac{C_1}{\lambda(\ln(C_2/I_\lambda\lambda^5) + 1)}$$

Industrial Ranking of Methods

Category	Thermo- couples	Absorption Spectroscopy	UV Emission	IR Emission
Detector	1	4	4	10
Sources	0	8	8	0
Development cost	2	10	5	20
Manufacturing cost	2	10	10	8
Utility	10	4	4	2
Intrusive	15	4	4	1
Operational ease	1	3	3	1
Longevity	10	2	2	2
Maintenance	5	8	8	2

High Speed Spectrometer

Validation of ES100 Measurements

Typical Spectra from a Turbulent Flame

Measurements from a Turbine Inlet

- Spectral intensity data collected at 1320 Hz
- Very high repeatability for mean intensities
- Temperature and gas concentrations obtained assuming homogeneous paths

Westinghouse Turbine at NRC

- Temperature and gas concentrations obtained using iterative algorithm
- Calculations assumed lack of methane and CO in the primary zone
- Temperature from ES100 correlated with NO_X
- Temperature from thermocouple is not correlated with NO_X

Westinghouse Turbine at NRC

- Results similar for data obtained with water addition
- Temperature from ES100 correlated with NO_X
- Temperature from thermocouple is not correlated with NO_X

Kerosene Spray Flame Data

- Temperature from
 ES100 correlated with
 global equivalence ratio
- No thermocouple data available
- Global equivalence ratio is also a direct measure of power output or heat release rate

High Pressure Data including Blade Radiation

Blade Temperature Estimation

'Urga Inc.

- Radiation from blades synchronized to data collection
- Intensity measurement spread over three blades
- Four gas band free wavelengths used to estimate temperature
- Mean Temperature is 1273 K and mean emissivity is 0.85

Current Uses of Infrared Emission Spectrometer

Fundamental studies of turbulent flame structure

- Sandia National Laboratories, NIST, NASA, DoD, varied universities
- Radiation from turbines and internal engines
- Westinghouse, KIMM
- Steel, Aluminum, and Molten Glass Manufacturing
- Pohang Steel Company, KAIST, Alcoa, etc.

Future Directions in Infrared Emission Spectroscopy

- Hyper spectral scanning
- Multiple Element Sensors
- Advanced deconvolution algorithm
- Hyper speed spectral scanning

Non-Homogeneous Fields

- Multiple view angles and slices
- Tomography for Local transmittances/emission intensities
- Absorption measurements are typically required

