Characterization of Fuel Injectors and Vrea Dosers

En'Urga Inc. 1291-A Cumberland Avenue, West Lafayette, IN 47906

http://www.enurga.com

Innovations in Quality Control

Outline

- Spray Characterization Methods
- > Sample Results
- > Quality assurance of injectors and dosers

Experimental Techniques

- Extinction tomography for planar drop surface area distribution, plume angles, % split amongst plumes, separation angles, and spray pattern
- Pattern Imaging Velocimetry for planar axial and radial velocities
- ➤ Temporally resolved to 100 microseconds

Principle of Operation

- > Path integrated extinction of laser sheets
- Multiple view angles for non-axisymmetric turbulent flows
- > Multiple slices to obtain high spatial resolution
- Local extinction coefficients obtained by statistical tomography (MLE method)
- For liquid sprays, the local extinction coefficients is equal to the drop surface areas per unit volume

Measurement Characteristics

Aerosol limitations	Unrestricted
Distance to sample	Unrestricted
Probe volume	Planar
Size	Unrestricted
Number limitation	Extinction
Sampling type	Concentration
Measured quantities	Surface area * no. of drops/m ³
Dynamic range	Instrument SNR
Sampling mode	Instantaneous, time averaged,
	time resolved
Sensitivity highest	Uniform across range

Why surface area density

- Total amount of fuel or liquid evaporated is proportional to heat release rate in combustion and solid mass fraction in spray drying.
- Correlation coefficient (R) of different parameters with total fuel evaporated
- Mass flux R = 0.903 Velocity R = -0.239
- Diameter = 0.681 Surface area density = 0.961

For combustion, spray drying, and urea dosing applications, surface area density is optimal method of comparing different nozzles or checking uniformity

Comparison with Competitive Technology

- Extinction \Rightarrow Immune to environmental lighting
- ➢ Diode lasers ⇒ Class II, No safety issues
- > Monolithic \Rightarrow Out-of-box factory floor deployment
- \blacktriangleright Adaptive grids \Rightarrow Alignment of nozzle not critical
- \blacktriangleright Advanced GUI \Rightarrow Easily operated by technician
- ▶ Reliable \Rightarrow 100% quality assurance of nozzles

Only quantitative (+/- 2% on absolute values, +/- .5% repeatability) patternator on the market

Comparison of Methods

Measurement Characteristics	Light Scattering	Fraunhofer	Light Sheet Imaging	Extinction
	Interferometry	Diffraction, Ensem		Tomography
Basic Measurement	Diameter/Velocity	Diameter	Pattern	Surface area
Accuracy	+/- 20%	+/- 20%	Not quantitative	+/- 2%
Particle Shape Restriction	Spherical	Sphere,Irregular	Spherical	none
Particle Composition	Transparent, Opaque	Better if opaque	None	none
Index of Refraction Dependence	Yes	Partial/none	None	None/Imaginary
Working distance (Trans to Det)	3 m	0.5 m	0.5m	Unlimited
Sample Volume	Small, Point	Line of site	Plane/volume	Plane/volume
Sample Volume Bias	Yes, Correction	None	Yes, Correction	None
Size Minimum, mm	0.3	0.3	3	Unlimited
Maximum size	1,000	500	unlimited	Unlimited
Number Density Maximum	Coincid/extinction	Extinction/MultiScat	Extinction/overlap	Extinction
Number Density Minimum	None	Yes, Low SNR	Blank Images	Low SNR
Sampling Type	Flux Dependent	Concentration	Concentration	N/A
Sampling Mode	Time ave/	Instantaneous/	Instantaneous	Time Ave, Time
	Time Resolved	Time Reolved		Resolved, Instant
Size Dynamic Range	50	50	20	N/A
Particle Velocity	Yes	No	Possible	Possible
Number Density Measurements	Yes	Yes, With extinction	Yes	Yes
Measurement Sensitivity	Highest for largest	Highest for middle	Highest for largest	Uniform across range

Innovations in Quality Control

Imaging Velocimetry

- Two types on instruments available for planar velocity estimation in sprays
- Planar Particle Imaging Velocimetry and Statistical Pattern Imaging Velocimetry
- First type tracks individual particles and determines displacement
- Second type tracks flow patterns and determines peak spatial correlations over a fixed time window

Advantages and Disadvantages of SPIV

Advantages

- Does not require distinct particles
- Works with various types of lighting such as shadowgraphy and natural lighting
- > Work equally well with dense sprays
- > High powered lasers not required

Disadvantages

- Longer computational time required
- > Minimum 10 KHz camera

Sample Results

Innovations in Quality Control

Sample Results Patternator

- ≻ Urea doser
- Spray pattern is not very axisymmetric
- ≻ 90% of the spray is within a small angle
- Quantitative values of surface area densities

GDI Injector

Mean plume angles (deg.)	% area in plume	30
10.89	19.32	20-
5.73	4.69	15-
11.53	21.71	
10.48	17.91	
11.51	23.06	
9.35	12.93	
Mean centroid	Mean centroid	-15
Mean centroid (x, mm)	Mean centroid (y, mm)	-15-
Mean centroid (x, mm) 3.26	Mean centroid (y, mm) -5.69	-15- -20- -25-
Mean centroid (x, mm) 3.26 -4.84	Mean centroid (y, mm) -5.69 14.28	
Mean centroid (x, mm) 3.26 -4.84 -22.13	Mean centroid (y, mm) -5.69 14.28 1.97	-15 -20 -25 -30 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Distance (mm)
Mean centroid (x, mm) 3.26 -4.84 -22.13 -29.04	Mean centroid (y, mm) -5.69 14.28 1.97 -10.75	$\frac{1}{20}$
Mean centroid (x, mm) 3.26 -4.84 -22.13 -29.04 -15.37	Mean centroid (y, mm) -5.69 14.28 1.97 -10.75 -18.49	-15 -20 -25 -20 -25 -20 -25 -20 -15 -10 -5 -0 -5 -10 -5 -20 -25 -20 -15 -10 -5 -25 -20 -25 -20 -25 -20 -25 -30 Distance (mm) Reliable data with

Innovations in Quality Control

Sample Results SPIV

X (mm)

Comparison with PDA

Quality Assurance of Nozzles

Quality Control Objectives

- Define QC parameters
- > Set tolerance limits
- Generate master template
- Compare each nozzle with master template
- > Accept/reject nozzle based on patternation result

Sample QC parameter (1): Spray Angle

One of over 100 QC parameters used by the SETscan patternator

Quality audit configuration

Over 3000 nozzles or injector audited in one day Rapid turn over with minimal supervision by technicians Average system downtime < 3 day per year

Sample Report Generated by SETscan

Traceable warehoused data for all injectors and dosers

Sample Installation (OP-600)

- 2 computer QA system
- Automatic nozzle mounts
- Booth by Alsmatik
- QA software by En'Urga
- Multiple types of nozzles
- \blacktriangleright ROI < 1 year

Photograph: Courtesy Danfoss S/A

Selected Customers

Abbott	General Motors	Hitachi
Bend Research	Cummins	AVL
Pfizer	Emcom Technologies	FEV
S.C. Johnson & Son	Faurecia	Nordson
Catalytica Energy	Donaldson	Delavan
Delphi	Proctor & Gamble	Woodward
Ricardo	Honeywell	Tenneco
Continental	Bombardier	Synerject
Eaton	Rolls Royce	Danfoss
Columbian Chemical	General Electric	Boston Scientific
United Technologies	Dow Agrosciences	Vertex
Aerosapce System	Laboratories	Pharmaceuticals
Toyota	Bosch LLC.	3M

