

# Outline

- Spray Characterization Methods
- > Sample Results
- > Quality assurance using optical patternator





- Light scattering interferometry
- Fraunhofer diffraction
- Laser sheet imaging
- Extinction tomography
- Imaging velocimetry





# **Light Scattering Interferometry**

- Fringe pattern from 2 laser beams
- Particle scatters light and projects pattern
- Detector at one angle provides velocity
- Multiple detectors provide size







### **Measurement Characteristics**

| Aerosol limitations | Spherical, transparent/opaque |
|---------------------|-------------------------------|
| Distance to sample  | < 3m                          |
| Probe volume        | small                         |
| Size                | 1-500µm                       |
| Number limitation   | Coincident, extinction        |
| Sampling type       | Flux dependent                |
| Measured quantities | Velocity, size                |
| Dynamic range       | 50                            |
| Sampling mode       | Time averaged, time resolved  |
| Sensitivity highest | large drops                   |





### **Fraunhofer Diffraction**







# **Measurement Characteristics**

| Aerosol limitations | None on shape/better if opaque  |
|---------------------|---------------------------------|
| Distance to sample  | < 0.5 m                         |
| Probe volume        | Line of sight                   |
| Size                | 0.3-500 μm                      |
| Number limitation   | Extinction, multiple scattering |
| Sampling type       | Concentration                   |
| Measured quantities | Size                            |
| Dynamic range       | 100                             |
| Sampling mode       | Time averaged, time resolved    |
| Sensitivity highest | Middle range of drop sizes      |





# **Laser Sheet Imaging**

- > Laser sheet to illuminate spray
- Image taken using a CCD camera at an oblique angle
- Intensity proportional to drop surface area per unit volume

#### Potential Errors

- Laser extinction
- Signal attenuation
- Secondary emission

#### Implication: Qualitative patternation







### **Measurement Characteristics**

| Aerosol limitations | Spherical particles       |  |
|---------------------|---------------------------|--|
| Distance to sample  | < 0.5 m                   |  |
| Probe volume        | Planar, volume            |  |
| Size                | 3-unlimited               |  |
| Number limitation   | Extinction, image overlap |  |
| Sampling type       | Concentration dependent   |  |
| Measured quantities | Light intensity           |  |
| Dynamic range       | 20                        |  |
| Sampling mode       | Instantaneous             |  |
| Sensitivity highest | Largest drops             |  |







En'Urga Inc.



### **Principle of Operation**

- > Path integrated extinction of laser sheets
- Multiple view angles for non-axisymmetric turbulent flows
- > Multiple slices to obtain high spatial resolution
- Local extinction coefficients obtained by statistical tomography (MLE method)
- For liquid sprays, the local extinction coefficients is equal to the drop surface areas per unit volume





### **Measurement Characteristics**

| Aerosol limitations        | Unrestricted                                   |
|----------------------------|------------------------------------------------|
| Distance to sample         | Unrestricted                                   |
| Probe volume               | Planar                                         |
| Size                       | Unrestricted                                   |
| Number limitation          | Extinction                                     |
| Sampling type              | Concentration                                  |
| <b>Measured</b> quantities | Surface area * no. of drops/m <sup>3</sup>     |
| Dynamic range              | Instrument SNR                                 |
| Sampling mode              | Instantaneous, time averaged,<br>time resolved |
| Sensitivity highest        | Uniform across range                           |





# Why surface area density

- Total amount of fuel or liquid evaporated is proportional to heat release rate in combustion and solid mass fraction in spray drying.
- Correlation coefficient (R) of different parameters with total fuel evaporated
- Mass flux R = 0.903 Velocity R = -0.239
- Diameter = 0.681 Surface area density = 0.961

For combustion, spray drying, and urea dosing applications, surface area density is optimal method of comparing different nozzles or checking uniformity





# **Comparison with Competitive Technology**

- $\blacktriangleright$  Extinction  $\Rightarrow$  Immune to environmental lighting
- > Diode lasers  $\Rightarrow$  Class II, No safety issues
- > Monolithic  $\Rightarrow$  Out-of-box factory floor deployment
- Adaptive grids  $\Rightarrow$  Alignment of nozzle not critical
- Advanced GUI  $\Rightarrow$  Easily operated by technician
- ▶ Reliable  $\Rightarrow$  100% quality assurance of nozzles

Only quantitative (+/- 2% on absolute values, +/- .5% repeatability) patternator on the market







#### **Comparison of Methods**

| Measurement Characteristics     | Light Scattering    | Fraunhofer           | Light Sheet Imaging | Extinction           |
|---------------------------------|---------------------|----------------------|---------------------|----------------------|
|                                 | Interferometry      | Diffraction, Ensem   |                     | Tomography           |
| Basic Measurement               | Diameter/Velocity   | Diameter             | Pattern             | Surface area         |
| Accuracy                        | +/- 20%             | +/- 20%              | Not quantitative    | +/- 2%               |
| Particle Shape Restriction      | Spherical           | Sphere,Irregular     | Spherical           | none                 |
| Particle Composition            | Transparent, Opaque | Better if opaque     | None                | none                 |
| Index of Refraction Dependence  | Yes                 | Partial/none         | None                | None/Imaginary       |
| Working distance (Trans to Det) | 3 m                 | 0.5 m                | 0.5m                | Unlimited            |
| Sample Volume                   | Small, Point        | Line of site         | Plane/volume        | Plane/volume         |
| Sample Volume Bias              | Yes, Correction     | None                 | Yes, Correction     | None                 |
| Size Minimum, mm                | 0.3                 | 0.3                  | 3                   | Unlimited            |
| Maximum size                    | 1,000               | 500                  | unlimited           | Unlimited            |
| Number Density Maximum          | Coincid/extinction  | Extinction/MultiScat | Extinction/overlap  | Extinction           |
| Number Density Minimum          | None                | Yes, Low SNR         | Blank Images        | Low SNR              |
| Sampling Type                   | Flux Dependent      | Concentration        | Concentration       | N/A                  |
| Sampling Mode                   | Time ave/           | Instantaneous/       | Instantaneous       | Time Ave, Time       |
|                                 | Time Resolved       | Time Reolved         |                     | Resolved, Instant    |
| Size Dynamic Range              | 50                  | 50                   | 20                  | N/A                  |
| Particle Velocity               | Yes                 | No                   | Possible            | Possible             |
| Number Density Measurements     | Yes                 | Yes, With extinction | Yes                 | Yes                  |
| Measurement Sensitivity         | Highest for largest | Highest for middle   | Highest for largest | Uniform across range |





# **Imaging Velocimetry**

- > Two types for planar information
- Planar Particle Imaging Velocimetry and Statistical Pattern Imaging Velocimetry
- First type tracks individual particles and determines displacement
- Second type tracks flow patterns and determines peak spatial correlations over a fixed time window





# **Advantages and Disadvantages of SPIV**

#### **Advantages**

- > Does not require distinct particles
- Works with various types of lighting such as shadowgraphy and natural lighting
- > Work equally well with dense sprays
- > High powered lasers not required

#### **Disadvantages**

- > Bimodal velocity difficult to resolve
- Longer computational time required
- > Minimum 10 KHz camera



En'Urga Inc.

# **Sample Results**





### **Sample Results (PDA)**



*En'Urga Inc.* innovations in quality control



### **Sample Results (Malvern)**







#### **Sample Results Patternator**

- Struts signature seen in drop surface area map
- Hollow cone seen as hollow
- Drip from nozzle seen at the center



En'Urga Inc.



### **Automotive Injector**







### **PDA vs Patternator (Agreement)**













# **PDA vs Patternator (Discrepancy)**



- Agreement (within 20% 30%) when: Data-rate < 30,000 drops/s, largest drops at the densest region</li>
- Agreement is poor when: Drop size distribution is wide, there is strong correlation between velocity and size.
- Results from PDA does not provide smooth contours typical in these injectors even for fine grid size





### **PDA vs Patternator (Agreement)**













#### **Sample Results SPIV**







#### **Comparison with PDA**









# **Comparison with PDA**



En'Urga Inc.

- Reasonable agreement at lower pressure (12 MPa)
- Less agreement at 20 MPa
- PDA results biased with slow moving drops at the end of the injection cycle
- During most of the injection event, PDA cannot acquire data due to very high obscuration



### **Selected Patternator Customers**

| Abbott              | General Motors     | Hitachi                  |  |
|---------------------|--------------------|--------------------------|--|
| Bend Research       | Cummins            | AVL                      |  |
| Pfizer              | Emcom Technologies | FEV                      |  |
| S.C. Johnson & Son  | Faurecia           | Nordson                  |  |
| Catalytica Energy   | Donaldson          | Delavan                  |  |
| Delphi              | Proctor & Gamble   | Woodward                 |  |
| Ricardo             | Honeywell          | Tenneco                  |  |
| Continental         | Bombardier         | Synerject                |  |
| Eaton               | Rolls Royce        | Danfoss                  |  |
| Columbian Chemical  | General Electric   | <b>Boston Scientific</b> |  |
| United Technologies | Dow Agrosciences   | Vertex                   |  |
| Aerosapce System    |                    | Pharmaceuticals          |  |
| ιογοτά              | BOSCN LLC.         | 3171                     |  |





# **Quality Assurance of Nozzles**





### **Quality Control Objectives**

- > Define QC parameters
- Set tolerance limits
- Generate master template
- Compare each nozzle with master template
- > Accept/reject nozzle based on patternation result





### Sample QC parameter (1): Spray Angle







#### **Sample QC parameter (2): Angular Distribution**









#### **Sample QC Parameter (3): Radial Uniformity**







### **Quality audit configuration**







#### **Sample Report Generated by SETscan**



En'Urga Inc.



### **Sample Installation (OP-600)**



- 2 computer QA system
- Automatic nozzle mounts
- Booth by Alsmatik
- QA software by En'Urga
- Multiple types of nozzles
- Typical output: 1000/day

Photograph: Courtesy Danfoss S/A





### **Product Quality Implications**

- On-line 100% inspection of nozzles enabled
  - Traceable and warehoused data
  - Quick design verification tool
- Sorting of already manufactured nozzles





### **Selected Customer Comments**

"We purchased the patternator and in six months we approached our customer with a request to tighten tolerances on the nozzles we produce"

- "The SETscan patternator has given us an order of magnitude return on investment within one year after we purchased it"
- "The first time I saw the patternation results obtained with our nozzles on the SETscan, I was amazed. I did not realize what was possible with current technology"
- "Our department will most probably win the improved productivity award of our company, thanks in a large measure to the SETscan patternator"





